新起点
外心
2020-04-04 16:54:39

在数学中,一个二维平面上的多边形的外接圆是一个使得该多边形的所有顶点都在其上的圆形,这时称这个多边形为圆内接多边形,外接圆的圆心被称为该多边形的外心。

一个多边形至多有一个外接圆,也就是说对于一个多边形,它的外接圆,如果存在的话,是唯一的。并非所有的多边形都有外接圆。三角形和正多边形一定有外接圆。拥有外接圆的四边形被称为圆内接四边形。

任何三角形都有外接圆。三角形外心的位置在三角形的三条边的垂直平分线的交点上,到三个顶点的距离都相等(等于外接圆的半径),而且:

若以R表示三角形外接圆半径,那么根据正弦定理, a sin ⁡ A = b sin ⁡ B = c sin ⁡ C = 2 R {\displaystyle {\frac {a}{\sin A}}={\frac {b}{\sin B}}={\frac {c}{\sin C}}=2R} 。 若以"S"表示三角形面积,由于 S = 1 2 a b sin ⁡ C {\displaystyle S={\frac {1}{2}}ab\sin C} ,整理得到 R = a b c 4 S {\displaystyle R={\frac {abc}{4S}}} 。

过三点圆的方程为 | x 2 + y 2 x y 1 x 1 2 + y 1 2 x 1 y 1 1 x 2 2 + y 2 2 x 2 y 2 1 x 3 2 + y 3 2 x 3 y 3 1 | = 0 {\displaystyle {\begin{vmatrix}x^{2}+y^{2}&x&y&1\\x_{1}^{2}+y_{1}^{2}&x_{1}&y_{1}&1\\x_{2}^{2}+y_{2}^{2}&x_{2}&y_{2}&1\\x_{3}^{2}+y_{3}^{2}&x_{3}&y_{3}&1\end{vmatrix}}=0} ,故三角形外心坐标为 ( | x 1 2 + y 1 2 y 1 1 x 2 2 + y 2 2 y 2 1 x 3 2 + y 3 2 y 3 1 | 2 | x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 | , | x 1 x 1 2 + y 1 2 1 x 2 x 2 2 + y 2 2 1 x 3 x 3 2 + y 3 2 1 | 2 | x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 | ) {\displaystyle ({\frac {\begin{vmatrix}x_{1}^{2}+y_{1}^{2}&y_{1}&1\\x_{2}^{2}+y_{2}^{2}&y_{2}&1\\x_{3}^{2}+y_{3}^{2}&y_{3}&1\end{vmatrix}}{2{\begin{vmatrix}x_{1}&y_{1}&1\\x_{2}&y_{2}&1\\x_{3}&y_{3}&1\end{vmatrix}}}},{\frac {\begin{vmatrix}x_{1}&x_{1}^{2}+y_{1}^{2}&1\\x_{2}&x_{2}^{2}+y_{2}^{2}&1\\x_{3}&x_{3}^{2}+y_{3}^{2}&1\end{vmatrix}}{2{\begin{vmatrix}x_{1}&y_{1}&1\\x_{2}&y_{2}&1\\x_{3}&y_{3}&1\end{vmatrix}}}})}

圆内接四边形对角互补,其面积A可以用婆罗摩笈多公式求得: A = ( s − a ) ( s − b ) ( s − c ) ( s − d ) {\displaystyle A={\sqrt {(s-a)(s-b)(s-c)(s-d)}}} ,其中a, b, c, d为四边的长度,s为半周长。

其外接圆半径为: R = ( a c + b d ) ( a d + b c ) ( a b + c d ) 4 A {\displaystyle R={\frac {\sqrt {(ac+bd)(ad+bc)(ab+cd)}}{4A}}} 。

边长相等的四边形中,以圆内接四边形最大。

所有的正多边形都有外接圆,外接圆的圆心和正多边形的中心重合。边长为a的n边正多边形外接圆的半径为:

面积为:

正n 边形的面积 S n {\displaystyle S_{n}} 与其外接圆的面积 A n {\displaystyle A_{n}} 之比为

故此,当n趋向无穷时,

另外,其内切圆的面积 s n {\displaystyle s_{n}} 与其外接圆的面积 A n {\displaystyle A_{n}} 之比为:

相关:

网站公告: